skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Govorkova, Ekaterina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The promise of multi-messenger astronomy relies on the rapid detection of gravitational waves at very low latencies (O(1s)) in order to maximize the amount of time available for follow-up observations. In recent years, neural-networks have demonstrated robust non-linear modeling capabilities and millisecond-scale inference at a comparatively small computational footprint, making them an attractive family of algorithms in this context.However, integration of these algorithms into the gravitational-wave astrophysics research ecosystem has proven non-trivial.Here, we present the first fully machine learning-based pipeline for the detection of gravitational waves from compact binary coalescences (CBCs) running in low-latency. We demonstrate this pipeline to have a fraction of the latency of traditional matched filtering search pipelines while achieving state-of-the-art sensitivity to higher-mass stellar binary black holes. 
    more » « less
  2. Abstract Matched-filtering detection techniques for gravitational-wave (GW) signals in ground-based interferometers rely on having well-modeled templates of the GW emission. Such techniques have been traditionally used in searches for compact binary coalescences (CBCs), and have been employed in all known GW detections so far. However, interesting science cases aside from compact mergers do not yet have accurate enough modeling to make matched filtering possible, including core-collapse supernovae and sources where stochasticity may be involved. Therefore the development of techniques to identify sources of these types is of significant interest. In this paper, we present a method of anomaly detection based on deep recurrent autoencoders to enhance the search region to unmodeled transients. We use a semi-supervised strategy that we name‘Gravitational Wave Anomalous Knowledge’(GWAK). While the semi-supervised approach to this problem entails a potential reduction in accuracy compared to fully supervised methods, it offers a generalizability advantage by enhancing the reach of experimental sensitivity beyond the constraints of pre-defined signal templates. We construct a low-dimensional embedded space using the GWAK method, capturing the physical signatures of distinct signals on each axis of the space. By introducing signal priors that capture some of the salient features of GW signals, we allow for the recovery of sensitivity even when an unmodeled anomaly is encountered. We show that regions of the GWAK space can identify CBCs, detector glitches and also a variety of unmodeled astrophysical sources. 
    more » « less
  3. In this community review report, we discuss applications and techniques for fast machine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs. 
    more » « less